• Echo Dot@feddit.uk
    link
    fedilink
    English
    arrow-up
    20
    ·
    11 months ago

    Room temperature superconductor. Not semiconductor, that’s something different.

    With it we can build all sorts of otherwise impossible technologies.

    Batterys with massive charge capacities that last weeks.
    Stupidly high speed hover trains.
    Electrical wires that don’t heat up with use, don’t waste energy, and can never electric you.
    Body armour that actually repels bullets.

    Probably some kind of horrific bomb.

    • BarbecueCowboy@kbin.social
      link
      fedilink
      arrow-up
      7
      ·
      11 months ago

      Probably some kind of horrific bomb.

      It looks like the big technological leap in relation to ‘How can we use superconductors to hurt things’ is to use them in making advanced EMP devices. It doesn’t seem like anyone has figured out any other obvious use cases for them that massively change or improve upon the other horrific devices that we’ve already come up with.

      In regards to potential for use in war crimes, it could be a lot worse.

      • Echo Dot@feddit.uk
        link
        fedilink
        arrow-up
        4
        ·
        11 months ago

        One thing I could think of would be miniaturized railguns. A large part of the bulk in rail guns at the moment is the cooling system for the electro magnets and capacitors to deal with inefficient power delivery.

        A room temperature superconductor would fit both problems.

      • The Doctor@beehaw.org
        link
        fedilink
        arrow-up
        1
        ·
        11 months ago

        Those are currently viable with conventional technologies. Explosively pumped magnetic coils with some big-ass capacitors. You could probably do something similar with a spark gap instead of a coil.

        Room temperature superconductors would make them easier to build. Probably smaller.

    • TonyTonyChopper@mander.xyz
      link
      fedilink
      arrow-up
      2
      ·
      11 months ago

      These are some of the dumbest proposed applications I’ve ever seen for this. You have no idea what you’re talking about.

      • Echo Dot@feddit.uk
        link
        fedilink
        arrow-up
        3
        ·
        edit-2
        11 months ago

        Yes basically.

        You get electrocuted when you touch a bare copper wire because the human body is less resistant to electricity than copper (your nervous system is optimized to not be resistant to electricity). Electricity would prefer to go through you than the cable.

        But your nervous system still has some resistance, and you can’t get less resistance than zero resistance, so regardless of what you’re doing, the electricity would prefer to stay in the superconducting cable.

        For the same reason you could also submerge the cable in water and nothing would happen.

        The reason all this is very useful is that currently in order to prevent everybody getting electric shocks you have to insulate the cable in rubber. If you could safely make bare cables you could save an awful lot of rubber.

        • TonyTonyChopper@mander.xyz
          link
          fedilink
          arrow-up
          4
          ·
          11 months ago

          This has so many errors. Copper is a far better conductor than people. Set up a multimeter for resistance across your skin if you’re dubious, it’ll be in the kΩ per cm. Current will flow if a potential difference is present, regardless of whether there is a less resistive path available. Also the material in question is a metal oxide, not a metal. It’s brittle. So making it into a cable in the first place will be incredibly difficult and expensive. And even in their own paper they showed a limiting current of something like 400 mA, which is not suitable for high power applications.